15,752 research outputs found

    Non-Abelian Dual Superconductor Picture for Quark Confinement

    Full text link
    We give a theoretical framework for defining and extracting non-Abelian magnetic monopoles in a gauge-invariant way in SU(N) Yang-Mills theory to study quark confinement. Then we give numerical evidences that the non-Abelian magnetic monopole defined in this way gives a dominant contribution to confinement of fundamental quarks in SU(3) Yang-Mills theory, which is in sharp contrast to the SU(2) case in which Abelian magnetic monopoles play the dominant role for quark confinement.Comment: 9 pages, 3 figures (4 ps files); The paper was extensively revised, focusing especially on the lattice par

    Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations

    Full text link
    Gravitational waves from oscillating neutron stars in axial symmetry are studied performing numerical simulations in full general relativity. Neutron stars are modeled by a polytropic equation of state for simplicity. A gauge-invariant wave extraction method as well as a quadrupole formula are adopted for computation of gravitational waves. It is found that the gauge-invariant variables systematically contain numerical errors generated near the outer boundaries in the present axisymmetric computation. We clarify their origin, and illustrate it possible to eliminate the dominant part of the systematic errors. The best corrected waveforms for oscillating and rotating stars currently contain errors of magnitude ∼10−3\sim 10^{-3} in the local wave zone. Comparing the waveforms obtained by the gauge-invariant technique with those by the quadrupole formula, it is shown that the quadrupole formula yields approximate gravitational waveforms besides a systematic underestimation of the amplitude of O(M/R)O(M/R) where MM and RR denote the mass and the radius of neutron stars. However, the wave phase and modulation of the amplitude can be computed accurately. This indicates that the quadrupole formula is a useful tool for studying gravitational waves from rotating stellar core collapse to a neutron star in fully general relativistic simulations. Properties of the gravitational waveforms from the oscillating and rigidly rotating neutron stars are also addressed paying attention to the oscillation associated with fundamental modes

    Inverse Spin Hall Effect Driven by Spin Motive Force

    Full text link
    The spin Hall effect is a phenomenon that an electric field induces a spin Hall current. In this Letter, we examine the inverse effect that, in a ferromagnetic conductor, a charge Hall current is induced by a spin motive force, or a spin-dependent effective ` electric' field Es{\bm E}_{\rm s}, arising from the time variation of magnetization texture. By considering skew-scattering and side-jump processes due to spin-orbit interaction at impurities, we obtain the Hall current density as σSHn×Es\sigma_{\rm SH} {\bm n}\times{\bm E}_{\rm s}, where n{\bm n} is the local spin direction and σSH\sigma_{\rm SH} is the spin Hall conductivity. The Hall angle due to the spin motive force is enhanced by a factor of P2P^{2} compared to the conventional anomalous Hall effect due to the ordinary electric field, where PP is the spin polarization of the current. The Hall voltage is estimated for a field-driven domain wall oscillation in a ferromagnetic nanowire.Comment: 4 pages, 3 figures, the title has been change

    Thermodynamic properties of the one-dimensional Kondo insulators studied by the density matrix renormalization group method

    Full text link
    Thermodynamic properties of the one-dimensional Kondo lattice model at half-filling are studied by the density matrix renormalization group method applied to the quantum transfer matrix. Spin susceptibility, charge susceptibility, and specific heat are calculated down to T=0.1t for various exchange constants. The obtained results clearly show crossover behavior from the high temperature regime of nearly independent localized spins and conduction electrons to the low temperature regime where the two degrees of freedom couple strongly. The low temperature energy scales of the charge and spin susceptibilities are determined and shown to be equal to the quasiparticle gap and the spin gap, respectively, for weak exchange couplings.Comment: 4 pages, 3 Postscript figures, REVTeX, submitted to J. Phys. Soc. Jp

    A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states

    Get PDF
    We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations derived here are different from those previously given by Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numerical relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in first post-Newtonian order.Comment: 5 pages, corrected eqs.(2.10), (2.11) and (3.1

    Merger of black hole-neutron star binaries: nonspinning black hole case

    Get PDF
    We perform a simulation for merger of a black hole (BH)-neutron star (NS) binary in full general relativity preparing a quasicircular state as initial condition. The BH is modeled by a moving puncture with no spin and the NS by the Γ\Gamma-law equation of state with Γ=2\Gamma=2. Corotating velocity field is assumed for the NS. The mass of the BH and the rest-mass of the NS are chosen to be ≈3.2M⊙\approx 3.2 M_{\odot} and ≈1.4M⊙\approx 1.4 M_{\odot} with relatively large radius of the NS ≈14\approx 14 km. The NS is tidally disrupted near the innermost stable orbit but ∼80\sim 80% of the material is swallowed into the BH with small disk mass ∼0.3M⊙\sim 0.3M_{\odot} even for such small BH mass ∼3M⊙\sim 3M_{\odot}. The result indicates that the system of a BH and a massive disk of ∼M⊙\sim M_{\odot} is not formed from nonspinning BH-NS binaries, although a disk of mass ∼0.1M⊙\sim 0.1M_{\odot} is a possible outcome.Comment: 5 pages. Phys. Rev. D 74, 121503 (R) (2006

    Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    Get PDF
    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of non-rotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. The tests (i)--(iii) were carried out with the Γ\Gamma-law equation of state, and the test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented.Comment: 28 pages, to appear in PRD 67, 0440XX (2003

    Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas

    Full text link
    A numerical study of magnetic reconnection in the large-Lundquist-number (SS), plasmoid-dominated regime is carried out for SS up to 10710^7. The theoretical model of Uzdensky {\it et al.} [Phys. Rev. Lett. {\bf 105}, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is \normEeff\sim 0.02 independently of SS for S≫104S\gg10^4. The plasmoid flux (Ψ\Psi) and half-width (wxw_x) distribution functions scale as f(Ψ)∼Ψ−2f(\Psi)\sim \Psi^{-2} and f(wx)∼wx−2f(w_x)\sim w_x^{-2}. The joint distribution of Ψ\Psi and wxw_x shows that plasmoids populate a triangular region wx≳Ψ/B0w_x\gtrsim\Psi/B_0, where B0B_0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with wx∼10w_x\sim 10% of the system size are shown to emerge in just a few Alfv\'en times, independently of SS, suggesting that large disruptive events are an inevitable feature of large-SS reconnection.Comment: 5 pages, 6 figures, submitted for publicatio

    Top Quark Physics at the LHC

    Get PDF
    A digest of the prospects of top quark physics at the LHC is presented. The ATLAS and the CMS detectors are about to produce a large amount of data with high top quark contents from the LHC proton-proton collisions. A wide variety of physics analyses is planned in both experiments, and a number of useful insights have already been obtained regarding their detector performance and physics potential. The results were collected mainly from the CSC analysis in the ATLAS experiment (2008) and the TDR from CMS (2007) with updates where available. This summary is based on the talk presented at the Hadron Collider Physics Symposium 2008, Galena, Illinois, May 27-31, 2008
    • …
    corecore